CORE BANKING APPLICATION CUSTOMIZATION

TCB HUB SCHOOLS

CORE BANKING SCRIPTING SYNTAX

CORE BANKING [/ USERHOOKS AND FRONTEND

SCRIPTING SYNTAX @/ EVENTS DEVELOPMENT

LEARNING OBJECTIVES

Al the end of the session, the user should be able to
» Understand the concepts of Customisation through scripting logic.
» Understand the terms Scripting event & Userhooks

|Understand the naming conventions of scripting language & default directory

structure

Understand the terminology and syntax of scripting language

v

\Write small scripts using the syntax described.

WHAT IS SCRIPTING

Scripting is a programming language supported by Finacle™ for manipulating a set
of defined input data in a script and gives a defined output data for further

processing. Scripting is also used to solve the usability issues in the user interface

and for interfacing with other delivery channels.

REPOSITORY AND CLASSES

Scripting implements a way of passing data between the Finacle™ programs, User

Hooks, User routines, User Executables and the script using Repositories.
A Repository is a named entity, which holds a set of named Cl/asses.

A Class is a set of name, value pairs. The name, value pair is called a fieldname and
fieldvalue. A Class can hold only one type of fieldvalue, which is specified during

Class creation.

Integer, Float, Double, Character and String Classes are currently supported. A

fieldvalue is referenced using the following syntax:
Repository-name.Class-name.Field-name

Some standard repositories and classes are managed by Finacle™ and are available

for use. Refer appendix (page-274) for list of repositories, the classes and the

variables available.

REPOSITORY AND CLASSES

Scripting implements a way of passing data between the Finacle™ programs, User

Hooks, User routines, User Executables and the script using Repositories.
A Repository is a named entity, which holds a set of named Cl/asses.

A Class is a set of name, value pairs. The name, value pair is called a fieldname and
fieldvalue. A Class can hold only one type of fieldvalue, which is specified during

Class creation.

Integer, Float, Double, Character and String Classes are currently supported. A

fieldvalue is referenced using the following syntax:
Repository-name.Class-name.Field-name

Some standard repositories and classes are managed by Finacle™ and are available

for use. Refer appendix (page-274) for list of repositories, the classes and the

variables available.

SCRIPTING RESTRICTIONS

There is a size limit of 128 KB for any Finacle script file. If a script is greater than this

size, then a fatal error will be thrown.

Example:

A script file ‘LoanDmdSatisfy.scr’ of size more than the maximum limit was created

and this was the error thrown during execution: “File [/LoanDmdSatisfy.scr] greater
than 131072

SCRIPTING SYNTAX

Every script must begin with a ‘<start’ and end with a ‘end->’ tags.

Script has 26 built-in scratch pad variables. These are sv_a, sv_b... sv_z.

All these variables are globally accessible across scripts. The user need not define

the scratch pad variables to be of a particular type. The assignment to a scratchpad

variable will decide the type of the variable based on the type of the right-hand side.

Scripting allows the dynamic type change.

This type is maintained until a new assignment is made. So Scripting allows the

dynamic type change.

SCRIPTING SYNTAX

Eq.: sv_a=12.45

sv_a = "Hello"

Here, it makes the type of 'sv_a' to be set to DOUBLE type at the first line. Until the

last line, sv_a carries its type as DOUBLE. In the last statement its type is set to

STRING.

< Ensure that the first line of the script is the start tag. Though this is not essential
but helps in debugging scripts when errors are encountered as script counts line
numbers from the start tag. It is recommended to have all comments after the

start tag only.Start tag is mandatory but end tag is not but its recommended to

have end tag as well.

SCRIPTING COMMENT

Scripting allows comments in scripts.

All statements with # as the first non-white space character are treated as

comments. This is the only way to make a line as comment.

Even if sequences of lines are to be treated as comments then each line must be

preceded with ‘#'.

OPERATORS - ARITHMETIC OPERATORS

R
Operator ‘+’ works both for STRING/CHAR type also.

-, %, ‘I work only for numeric type variables.

OPERATORS - ARITHMETIC OPERATORS

<—-—-start
sv_a = "FIRST"
v b =s8v.a + " AND "

#sv b is "FIRST AND "

sv_c = "SECOND"

SV _a SV b + s8v cC

#now sv a is "FIRST AND SECOND"
sv a = "FIRST" + " AND " + "SECOND"

sv_a is "FIRST AND SECOND"
sv.a = 10

sv b =75

sv:c = 8v. a + sv b

sv_c is 15

svd=sva/ svbh

sv.d is 2

SV e = 8v a - svb

Ev_g is 5 N

sv f =s8v.a * sv b

¢ sv £ is 50

OPERATORS - COMPARISON OPERATORS

I==I! !{=I! !}=I! !{I! '}I! !!=I
The outcome all these operations are TRUE (1) or FALSE (0).
In all these operations, if both arguments are STRINGs the string comparisons are

made else, the STRINGs are converted to INTEGERs and the comparisons are

done. If CHAR types are available they are accessed as INTEGER types and

comparisons are made.

OPERATORS - COMPARISON OPERATORS

<—-—-5tart
sv_a = 10
sv. b = 12
if (sv_a == sv_b) then

print ("sv_a is equal to sv _b")
else

print ("sv_a 1s not equal to sv _b")
endif

if (sv_a != sv _b) then
print ("sv_a is not equal to sv _b")

else
print ("sv a 1s equal to sv_b")
endif

if (sv_a < sv_b) then

print | “Eﬁ_a is less than sv _b")
else

print ("sv_a is not less than sv b")
endif

end-->

OPERATORS - LOGICAL OPERATORS
'AND’, 'OR’
The outcome all these operations are TRUE (1) or FALSE (0).

In all these operations, if both arguments are STRINGs, the string logical operations
are made. If CHAR types are available they are accessed as INTEGER types and

logical operations are made.

For Example:

To do a processing only when the values in variable sv_a and sv_b are not null, the

condition should be written as

if ((sv_a!="") AND (sv_b !="")) then
----- do processing -----
endif

OPERATORS - UNARY OPERATORS

The same ‘-’ operator can be used as binary as well as unary operator.

UNARY operator can only be used with numeric types.

<—-—-5tart
5V a = 10
sv b = -3V _a

Now sv_b is -10
end-->

EXPRESSIONS AND CONTROL STRUCTURE

In scripting, Expressions are valid combinations of variables, literals and operators.

Scripting provides the following control structures.

Checking a condition:
* IF (condition) THEN
statements

ENDIF

EXPRESSIONS AND CONTROL STRUCTURE

* IF (condition) THEN
statements
ELSE
statements
ENDIF
These two statements can be used depending on the necessity. Nested IF conditions

are allowed and the execution of these statements depends on the outer loop

condition.

EXPRESSIONS AND CONTROL STRUCTURE

<=-=-gstart
sV a = 10
sv_b = 12

if (sv_a > sv _b) then

print ("sv a is greater than sv b")
else

print ("sv_a is less than or egqual to sv _b")
endif
end-->

Each statement should be in a new line.

GOTO AND GOSUB

Transfer of control from one part of the script to another in the same script file is

facilitated by two constructs provided in the Scripting. The two constructs are GOTO
and GOSUB.

The syntax is as follows:
GOTO LabelName
GOSUB LabelName

The LABEL referred by LabelName in GOTO statement can only be forward
referenced i.e., GOTO cannot reference a label that exists before this statement in

the script.

In case of GOTO the execution of the script starts from the statement where the
LABEL is declared.

GOTO AND GOSUB

The LABEL referred by LabelName in GOSUB statement can be anywhere in the

script, i.e., the Label can be either before or after this GOSUB statement

In case of GOSUB the execution of the script starts from the statement where the
LABEL is declared and returns back to the next statement after the GOSUB as soon
as it finds RETURN statement in the script.

% Note about GOSUB : GOSUB cannot be used inside the Control structure fo
point to a SUBROUTINE that is outside the innermost Control structure.

GOTO AND GOSUB

<—--start

sv.a =1

4 if condition starts here
if(sv a == 1) THEN

GOSUB subRoutinel
we added a GOTO statement to jump
beyond the subroutine after the sub
routine exits

GOTO jmpl

sub routine is inside the if-endif condition
subRoutinel:

print (sv_a)

EETUEN

Jmpl :
4 if condition ends here
endif

EXITSCRIFPT
end-->

CALLING AND STARTING ANOTHER SCRIPT - SPAWNING

Transfer of control from one script to another is facilitated by two constructs

provided in the Scripting. The two constructs are CALL and START.
The syntax is as follows:

CALL (ScriptName)

START (ScriptName)

where ScriptName is either a string, e.g., “scriptl.htt”, or Repository

variable/Scratchpad variables of STRING type.

CALLING AND STARTING ANOTHER SCRIPT - SPAWNING

In both the above statements, if the script file doesn't exist in the PATH, an error is

reported.
CALL (Path, ScriptName)

START (Path, ScriptName)

where Path is either a string or a Repository variable/scratchpad variable of STRING
type,
ScriptName is either a string or a REP variable/scratchpad variable of STRING type

Path and ScriptName are appended to get the full path.

If the script file exists and is readable, the execution of the file starts from the

beginning.

CALLING AND STARTING ANOTHER SCRIPT - SPAWNING

In case of CALL the execution of the script returns back to the same point in the old

script as soon as it finds EXITSCRIPT statement in the new script.

All the scratchpad variables have a global context. That is, all the scratchpad

variables are carried over from the caller script to the called script and vice-versa.

BUILT-IN UTILITY FUNCTIONS

Script can use the following The evaluation of these functions results as

built-in functions at the follows:

apprupri_ate places in An error will result in all the cases if data-type

expressions. mismatch occurs in any fields.

MID$ (Var, StartPosition, Returns the substring from a given position upto a

Length) defined length in a given variable.

LEFT$ (Var, Length) Returns the leftmost Length number of bytes from
Var.

RIGHT$S (Var, Length) Return the rightmost Length number of bytes from
Var.

CINT (Var) Convert Var to an integer.

CDOUBLE (Var) Convert Var to a double.

TOLOWER (Var) Convert all character(s) of STRING/CHAR to
lowercase.

TOUPPER (Var) Convert all character(s) of STRING/CHAR to
uppercase.

FORMATS (Var, FormatString) Formats the contents of Var according to the
FormatString specified in the C printf style.

BUILT-IN UTILITY FUNCTIONS

SET$ (Var1, From, Length,
Var2)

Sets the contents of Var1 from From position till
Length bytes to the content of Var2.

STRLEN (Var)

Returns the length of Var.

CHARAT (Var, Position)

Returns the character at Position in Var.

LTRIM (Var1 [, Var2])

Left trim Var1. Var2 is the character to be
trimmed. Default value of Var2 is * “.

RTRIM (Var1 [, Var2])

Right trim Var1. Var2 is the character to be
trimmed. Default value of Var2 is * .

TRIM (Var1 [, Var2])

Trim Var1. Var2 is the character to be trimmed.
Default value of Var2 is * °.

LPAD (Var1, Var2 [, Var3])

Left pad Var1 with Var3 upto the length Var2. Var3
is the character to be used for padding. Default
value of Var3is **

RPAD (Var1, Var2 [, Var3])

Right pad Var1 with Var3 to make the length Var2.
Var3 is the character to be used for padding.
Default value of Var3 is * .

BUILT-IN UTILITY FUNCTIONS

REPEXISTS (Var1) Checks if Repository Var1 exists.
CLASSEXISTS (Var1, Var2) Checks if Class Var2 exists in Rep Var1.
FIELDEXISTS(REP.CLA.FLD) Checks if Field FLD exists in Class FLD which
exists in Rep REP.
GETPOSITION (Var1, Var2) Returns the first position of Var2 in Var1. Var1 is
String and Var2 is String/Char. Case Sensitive.
GETIPOSITION (Var1, Var2) Returns the first position of Var2 in Var1. Var1 is
String and Var2 is String/Char. Case Insensitive.
STRICMP (Var1, Var2) Does String Comparison of two Strings/
Characters without regard to case.
GETSTRING (Var1) Converts a Char type to String Type.
CREATEREP (Var1) Create a Temporary Repository Var1.
CREATECLASS (Var1, Var2, Create a Temporary Class Var2 in Repository
Var3) Var1 of the type Var3. Var3 has the following
value
1 for INTEGER
2 for DOUBLE
3 for FLOAT
4 for CHAR
5 for STRING
DELETEREP (Var1) Delete the Temporary Repository Var1
DELETECLASS (Var1, Var2) Delete the Temporary Class Var2 in Repository
Var1

USERHOOKS

Scripting provides for certain functions, which can be called within a script. These are

known as User Hooks.

The following is the syntax for calling a User routine within a script:

sv_a = URHK_FunctionName (STRING)

where sv_a will have the value returned from the function FunctionName, i.e tha

value of sv_a will be O(TRUE) if the userhook is successful or else it will be
1(FALSE) for failure.

USERHOOKS

FunctionName is the user hook and

STRING is either a string, e.g., “Data”, or a Repository variable/scratchpad variable
of STRING type.

There are default scripting user hook functions available for use in the script. These
user hook functions are explained in a separate topic. These hook functions will
provide the functionality as explained and the input and output parameters are

defined.

DEBUG UTILITIES

Application programmer can debug the application by setting the TRACE option ON.

To set the trace off, TRACE OFF can be used. By default, trace is OFF.

Setting TRACE ON makes the Script Engine to log all the information about each

statement it has executed in a log file with name ScriptFile _PID.trc.
The trace file generation also depends on another condition .i.e. the existence of

“.usertraceon” file in the user home directory. If this file is present then irrespective
of whether trace is on or off, the trace file is generated. If the file “.usertraceon” is

not present and TRACE is OFF, then no trace file is generated.

DEBUG UTILITIES

Within the script, to log information about a part of the script we can use the

combination of these two commands.

TRACE OFF

Similar to “.usertraceon” file, there exists a file “.userprinton”. Now three possible

cases for this are

a. The output of PRINT tokens is diverted to a file named “<Filename=>-
<PID>.stdout” — if .userprinton file is existing in the user's home directory.

b. All output of PRINT tokens diverted only to trace file - if TRACE is ON (or

.usertraceon file exists)

c. All output of PRINT tokens diverted to console (stdout) - If TRACE is OFF

HSCRIPT MENU - TESTING YOUR SCRIPT

User: USERT Calendar: |Gregonan »| | TimeZone: GMT (. Bank: |01 | sowtion: [FINCORE =l | &
= ‘Wi Menu | Show Memo Pad Background Menu CCY Converter | Logout |
MiFinacle

h Gnh
Execute Script
—— - * | Prescript
Post Script _ | Create Reposilories Report " Yes @ Mo
Submit | Clear |

The ‘ pre script “ can be used to initialize , set values for variables and the post script
to do processing based on the values got from script.

EXITING A SCRIPT

Scripting provides a safe way of exiting the execution of the script. Whenever the
Script Engine finds EXIT statement in the execution path stops the execution and

returns to the Calling routine.

Even when the EXIT statement is encountered in a new script that has been called
from another script, Script Engine stops the whole execution and returns to the upper

layer.

To return from called script to the calling script, use EXITSCRIPT.

BANCS REPO AND STDIN CLASS - FIELDS

Fields values available for any scripts in the repository BANCS and class STDIN

FIELD NAME

VALUE CONTAINED

1. | "languageCode"

This field contains the value of the language
code of the user e.g. INFENG

2. | "userld"

The userid of the user who executed the script

3. | "onlineOrBatch"

Whether this script is being executed through

a batch program or online ("O" or "B")

4. | "userWorkClass"

The workclass of the userid who executed the

script from UPM

5.| "menuOption"

The menu option which called this script

6. | "homeCrncyCode"

The home currency of the data center from
SCFM

BANCS REPO AND STDIN CLASS - FIELDS

7.| "homeCrncyAlias" The home currency alias

8. | "CurrentBancsVersion" The Finacle™ version

9. | "myBankCode" The bank code of the database

10| "myBrCode" The branch code of the SOL

11| "myExtCode" The Extension counter

12| "mySolld" The SOLID

13| "mySolAlias" The SOLALIAS

14| "mySolDesc" The description for the Sol as specified in
SCFM

15| "homeSolld" The Sol to which the User belongs

16| "homeSolAlias" The Home SOL Alias

17| "homeSolDesc" The Home Sol description as specified in
SCFM.

BANCS REPO AND STDIN CLASS - FIELDS

18| "dcAlias" The DC ALIAS

19 "SBString" The value of custoption for SBSTING

20 "CAString" The value of custoption for CASTING

21| "LLString" The value of custoption for LLSTING

22| "CCString" The value of custoption for CCSTING

23 "sysDate” The system date of the machine

24/ "BODDate" The current BOD date of the SOL

25 "termClass” The terminal class from TPM

26| "moduleldentity” The module which is calling the Script

27| "TestFlg"” Whether the script is being invoked in test
mode. E.g through menu option script

28 "WFflg" Whether the script is a workflow script

29‘ "ScriptName" The name of the script

USERHOOKS AND EVENTS

CORE BANKING / USERHOOKS AND FRONTEND

SCRIPTING SYNTAX EVENTS DEVELOPMENT

USERHOOK

Scripts have built-in functions known as Userhooks. Using these Userhooks, one is
allowed to perform the required tasks .This document describes all such functions
that are provided in Finacle, which can be used while writing a Finacle script. Some
of these functions are generic and can be used in the context of any of the Script

Events described in scripting events document

The general format for describing each function is as follows:
+ Brief description of the function and context in which it can be used.
+ Function syntax Detailed functionality
+ Description of the Input fields and Output fields

+ Example of the usage of the function

REPOSITORY AND CLASSES

All Finacle userhooks (except for MTT related functions) interface with the scripts
using a standard repository called "BANCS". There are two classes that have been
predefined in this repository, INFPARAM and OUTPARAM each of which holds "String’
type of fields. INFARAM is the class that is used to populate specified fields
(depending upon the function) in the script so that the function can access those as
parameters. All the fields (depending upon the function), that are the output of a
function are populated in the OUTPARAM class.

In addition to INPARAM class, the input to the functions can also be provided as

arguments to the function.
Mote:
The INPARAM class is cleared out once the userhook is executed and must be

repopulated by the script when calling another userhook or the same userhook in a

loop.

FUNCTIONALITIES, INPUT AND OUTPUT - ACCOUNT VALIDATION

urhk_valAcctNumber validates a given account number in the FINACLE database
and returns a value depending on whether the account number is valid or not. It can

be used in the context of any Script Event.

<-—-s5tart

sv 5 = BANCS.INPUT.uAccount

sv:i = urhk_valAcctNumber (sv_s)

if {sv_i = 0) then J* Rccount exists *f
BANCE .QUTPUOT . fAccount = sv 5
EXITSCRIFT -

else J* Recount does not exist *f
/* apply new account number derivation logic here =/
BANCE .QUTPUT . fAccount = Result of above logic

endif

exitscript

end——>=

The input to this function is an account number (FORACID).

The return value will be 0 in case a valid account number with the input string is

found. Otherwise the return value is 1.

FUNCTIONALITIES, INPUT AND OUTPUT - ACCOUNT INFORMATION

urhk_getAcctDetailsinReposifory returns information about a given account number
in the FINACLE database. It can be used in the context of any Script Event.

5v a = BANCE.INPUT.AcctMum
 sv b = urhk getAcctDetailsInRepository(sv a)

if (sv b == 1) then a
EhﬁEE-DUTEUT-DutString = "Arcount number is invalid®
BANCS .QUTPUT. success0rFailure="F"
exitscript

endif

sv & = cdouble (BANCS.OUTPARAM. Availablefmt)

sv:d = cdouble (BANCS.OUTPARBM.FullEffAvailablaAmt)

The input to this function is an account number (FORACID).

Return value is 0, if account found, else 1.

This function will return the following Account details into OUTPARAM class of
BANCS repository if the account exists in the datacenter database.

FUNCTIONALITIES, INPUT AND OUTPUT - ACCOUNT INFORMATION

Field Name in GAM table

Field name in BANCS repository

sol_id

Bacid

acct_name

cust_id

emp_id
gl_sub_head_code

acct_ownership

schm_code
schm_type
acct_opn_date
acct_cls_date
acct_cls_flg
mode_of_oper_code
acct_locn_code
acct_crncy_code

system_only_acct_flg

BANCS.OUTPARAM.acctSolld
BANCS.OUTPARAM.acctPlaceHolder
BANCS.OUTPARAM.acctName
BANCS.OUTPARAM.custld
BANCS.OUTPARAM.empld
BANCS.OUTPARAM.glSubHeadCode

BANCS.OUTPARAM.acctOwnerShip
E'mployee, O'ffice account)

BANCS.OUTPARAM.schmCode
BANCS.OUTPARAM.schmType
BANCS.OUTPARAM.acctOpenDate

BANCS.OUTPARAM.acctCloseDate

BANCS.OUTPARAM.acctCloseflg (Y/N)

BANCS.OUTPARAM.modeOprnCode
BANCS.OUTPARAM.acctLocnCode

BANCS.OUTPARAM.acctCrncyCode

(C'ustomer,

BANCS. OUTPARAM.systemOnlyAcctFlg (Y/N)

FUNCTIONALITIES, INPUT AND OUTPUT - ACCOUNT INFORMATION

Foracid BANCS.OUTPARAM.Acctld

dr_bal_lim BANCS.OUTPARAM.debitBalanceLimit
frez_code BANCS.OUTPARAM. freezeCode
frez_reason_code BANCS.OUTPARAM. freezeReasonCode
clr_bal_amt BANCS.OUTPARAM. clearBalance
un_clr_bal_amt BANCS.OUTPARAM. unclearBalance
ledg_num BANCS.OUTPARAM. ledgerNumber
drwng_power BANCS.OUTPARAM. drawingPower
sanct_lim BANCS.OUTPARAM. sanctionLimit

FUNCTIONALITIES, INPUT AND OUTPUT - ACCOUNT INFORMATION

Field Name in GAM table

Field name in BANCS repository

adhoc_lim

emer_advn

dacc_lim
system_reserved_amt
single_tran_lim
clean_adhoc_lim
clean_emer_advn
clean_single_tran_lim
system_gen_lim
chqg_alwd_flg
cash_excp_amt _|im
clg_excp_amt_lim
xfer_excp_amt_lim

cash_cr_excp_amt_lim

BANCS.OUTPARAM

BANCS.OUTPARAM.
BANCS.OUTPARAM.
BANCS.OUTPARAM.
BANCS.OUTPARAM.
BANCS.OUTPARAM.
BANCS.OUTPARAM.
BANCS.OUTPARAM.
BANCS.OUTPARAM.
BANCS.OUTPARAM.
BANCS.OUTPARAM.
BANCS.OUTPARAM.
BANCS.OUTPARAM.
BANCS.OUTPARAM.

. adhocLimit
emergencyAdvance
DACCLimit
systemReservedAmt
singleTranLimit
cleanAdhocLimit
cleanEmergencyAdvance
cleanSingleTranLimit
systemGeneratedLimit
chequeAllowed
cashExceptionAmtLimit
clearingExceptionAmtLimit
transferExceptionAmtLimit

cashCrExceptionAmtLimit

clg_cr_excp_amt_lim
xfer_cr_excp_amt_lim
cash_abnrml_amt_lim
clg_abnrml_amt_lim
xfer_abnrml_amt_lim
acrd_cr_amt
pb_ps_code
serv_chrg_coll_flg
int_paid_flg
int_coll_flg

limit_prefix

limit_suffix

BANCS.OUTPARAM.
BANCS.OUTPARAM.
BANCS.OUTPARAM.
BANCS.OUTPARAM.
BANCS.OUTPARAM.
BANCS.OUTPARAM.
BANCS.OUTPARAM.
BANCS.OUTPARAM.
BANCS.OUTPARAM.
BANCS.OUTPARAM.
BANCS.OUTPARAM.

FUNCTIONALITIES, INPUT AND OUTPUT - ACCOUNT INFORMATION

BANCS.OUTPARAM.

clearingCrExceptionAmtLimit
transferCrExceptionAmtLimit
cashAbnormal AmtLimit
clearingAbnormal AmtLimit
TransferAbnormal AmtLimit
accruedCreditAmt
passbookOrPasssheet
serviceChrgCollectedFlg
interestPaidFlag
interestCollectedFlag
limitPrefix

limitSuffix

clg_cr_excp_amt_lim
xfer_cr_excp_amt_lim
cash_abnrml_amt_lim
clg_abnrml_amt_lim
xfer_abnrml_amt_lim
acrd_cr_amt
pb_ps_code
serv_chrg_coll_flg
int_paid_flg
int_coll_flg

limit_prefix

limit_suffix

BANCS.OUTPARAM.
BANCS.OUTPARAM.
BANCS.OUTPARAM.
BANCS.OUTPARAM.
BANCS.OUTPARAM.
BANCS.OUTPARAM.
BANCS.OUTPARAM.
BANCS.OUTPARAM.
BANCS.OUTPARAM.
BANCS.OUTPARAM.
BANCS.OUTPARAM.

FUNCTIONALITIES, INPUT AND OUTPUT - ACCOUNT INFORMATION

BANCS.OUTPARAM.

clearingCrExceptionAmtLimit
transferCrExceptionAmtLimit
cashAbnormal AmtLimit
clearingAbnormal AmtLimit
TransferAbnormal AmtLimit
accruedCreditAmt
passbookOrPasssheet
serviceChrgCollectedFlg
interestPaidFlag
interestCollectedFlag
limitPrefix

limitSuffix

FUNCTIONALITIES, INPUT AND OUTPUT - ACCOUNT INFORMATION

Field Name in GAM table

Field name in BANCS repository

drwng_power _ind
drwng_power_pcnt
notional_rate
notional_rate_code
fx_clr_bal_amt
crncy_code
wtax_flg
wtax_amount_scope_flg
lien_amt
acct_mgr_user _id
schm_type
Partitioned_flg
Partitioned_type

Not in GAM table (Sum of
different limits)

BANCS.OUTPARAM

BANCS.OUTPARAM.
BANCS.OUTPARAM.
BANCS.OUTPARAM.
BANCS.OUTPARAM.
BANCS.OUTPARAM.
BANCS.OUTPARAM.
BANCS.OUTPARAM.
BANCS.OUTPARAM.
BANCS.OUTPARAM.
BANCS.OUTPARAM.
BANCS.OUTPARAM.

BANCS.OUTPARAM.

drawingPowerlndicator
drawingPowerPercentage
notionalRate
notionalRateCode
FXClearBalance
FCNRCmcyCode
TaxFlg
TaxAmtScopeFig
lienAmt
accountManagerUserld
schemeType
partitionedFlg

partitionedType

BANCS.OUTPARAM AvailableAmt

FUNCTIONALITIES, INPUT AND OUTPUT - ACCOUNT INFORMATION

Not in GAM table (Sum of | BANCS.OUTPARAM FxAvailableAmt
different limits)

Not in GAM table (Sum of | BANCS.OUTPARAM FFDAvailableAmt
different limits)

Not in GAM table (Sum of | BANCS.OUTPARAM FxFFDAvailableAmt
different limits)

Not in GAM table (Sum of | BANCS.OUTPARAM EffAvailableAmt
different limits)

Not in GAM table (Sum of | BANCS.OUTPARAM FxEffAvailableAmt
different limits)

Not in GAM table (Sum of | BANCS.OUTPARAM FullAvailableAmt
different limits)

Not in GAM table (Sum of | BANCS.OUTPARAM FxFullAvailableAmt

FUNCTIONALITIES, INPUT AND OUTPUT - ACCOUNT INFORMATION

Field Name in GAM table | Field name in BANCS repository

different limits)

Not in GAM table (Sum of | BANCS.OUTPARAM FullEffAvailableAmt
different limits)

Not in GAM table (Sum of | BANCS.OUTPARAM FxFullEffAvailableAmt
different limits)

FUNCTIONALITIES, INPUT AND OUTPUT - GET FILE LOCATION

This function will return the full path of the file name specified as input. It can typically
be used in scripts to get the location of a script file, which needs to be called from
within another script. The search for the file will be carried out according to the site-
customization directory search rules.

T=—==start
<" EF] lenameae™>

sv_a =
sv b = "SCRIPT" + "|™ + sv_a

sv _c = urhk getFileLocation(sv_ b)
sv d = BANCS.0OUTFARAM.fileLocatiaon

START (sv_d, sv_a)
exitscript

ernd———>
Input through INPARAM repository: NONE Output through OUTPARAM repository: The userhook returns the path of the file in
Input String as function argument: Contains two parts separated by a ‘|’ character. . g . m .
P g g P P yal the variable “fileLocation”. This can be accessed as follows:

e File Type — The type of the file whose path is required. The possible values

for this are: “FORM”, “EXE”, “SCRIPT”, “MRT", “SQL", “COM” and “MENU". sv_d = BANCS.OUTPARAM fileLocation

« File Name — The name of the file whose path is required. Function return value: Returns 1 if path is successfully got else returns 0.

Both the input parameters are mandatory.

FUNCTIONALITIES, INPUT AND OUTPUT - ROUND OFF AMOUNT

This function rounds off the amount to a nearby integer value depending upon the

input value provided.

<==start

trace on

sv_a = 10986792, 2358
sInput Amount

sv b = 100
Round off to 100 Rupees
sv ¢ = "L"

Lower amount

BANCS.INPARAM. InputAmount = sv _a
BANCS.INPARAM.RoundOffAmt = sv b
BANCS.INPARAM.RoundOffFlag = sv c
sv_r = urhk B2k RoundOff ("")

if (sv_r == 1) then
Error processing
endif

5v_g = BANCS.0UTPARAM.OutputAmount
sv_q contains the rounded amount. This should be 10886700.0000

end-=->

FUNCTIONALITIES, INPUT AND OUTPUT - ROUND OFF AMOUNT

All the input variables should be populated in the INPARAM class of the BANCS
repository. The variables are (all STRINGS):

InputAmount - The amount that is to be rounded off

RoundOffAmt - The numeric digit by which the amount to be rounded off

Example: If the amount is in Rupees
100 - 100 Rupees

.01 - 1 Paise

RoundOffFlag - Valid values are:
H - Roundoff to the next higher amount
L - Roundoff to the previous lower amount

N - Roundoff to the nearest amount

FUNCTIONALITIES, INPUT AND OUTPUT - ROUND OFF AMOUNT

All the input variables should be populated in the INPARAM class of the BANCS
repository. The variables are (all STRINGS):

InputAmount - The amount that is to be rounded off

RoundOffAmt - The numeric digit by which the amount to be rounded off

Example: If the amount is in Rupees
100 - 100 Rupees

.01 - 1 Paise

RoundOffFlag - Valid values are:
H - Roundoff to the next higher amount
L - Roundoff to the previous lower amount

N - Roundoff to the nearest amount

FUNCTIONALITIES, INPUT AND OUTPUT - ROUND OFF AMOUNT

All the input variables should be populated in the INPARAM class of the BANCS
repository. The variables are (all STRINGS):

InputAmount - The amount that is to be rounded off

RoundOffAmt - The numeric digit by which the amount to be rounded off

Example: If the amount is in Rupees
100 - 100 Rupees

.01 - 1 Paise

RoundOffFlag - Valid values are:
H - Roundoff to the next higher amount
L - Roundoff to the previous lower amount

N - Roundoff to the nearest amount

FUNCTIONALITIES, INPUT AND OUTPUT - ROUND OFF AMOUNT

Function returns 0 or 1. If 1, then there was failure in roundingoff. If 0O,

All output variables will be populated in the OUTPARAM class of the BANCS
repository. The variables are (all STRINGS):

OutputAmount - The roundedoff amount

FUNCTIONALITIES, INPUT AND OUTPUT - DATE ADD

This userhook is used to arrive at a date based upon the year and number of days

supplied as an input.

< = =sgtart
BANCS.INPARAM.calBase="01"
sv_e=BANCS.0UTPARAM.acct opn_ date

sv g = BANCS.0QUTPARAM.days

sv_v = LEFTS(sv_e,10) + "|" + FORMATS (CINT(sv_g), "%d")
SV m = urhk_BEk_ﬂata_add{sv_v]

sv_n = LEFT$ (BANCS.OUTPARAM.dateadd, 10)

sv o = LEFTS (BANCS.OUTPARAM. locdateadd, 10)

print (sv_n)
print (sv_o)

end=- ==

FUNCTIONALITIES, INPUT AND OUTPUT - DATE ADD
1) 4 digit year string

iiiii

3) Calendar Base — Determines the calendar type (Hijri/Gregorian/Buddha)

The output is available in the repository variables “dateadd” and locdateadd, which
can be accessed as

BANCS.OUTPARAM.dateadd
BANCS.OUTPARAM .locdateadd

FUNCTIONALITIES, INPUT AND OUTPUT - DATABASE SELECT

This userhook allows script writer to select data from database tables. The user
specifies the title of each selected field separated by comma before pipe symbol and
specifies the complete query after that. It stores the output error code of the query in
BANCS.OUTPARAM.DB_ERRCODE and message in
BANCS.OUTPARAM.DB_ERRMSG.

sv_r = urhk_dbSelect(variable)

The variable can be a scratch pad variable (sv_a) or a string (“user_id | select
user_id from upr where session_id = "xxxx").

Here note that everything before '|' (pipe symbol) is taken as the title value where as post

pipe symbol is taken as query.

FUNCTIONALITIES, INPUT AND OUTPUT - DATABASE SELECT

getenv ("BZK SESSION ID")

5V a =
sv b = Muser id | select user 1d from lgi where session id = '" + sv a +
nrr

sv_r = usrhk dbSelect(sv _b)

Comma separated Field titles followed by the Query, separated by pipe symbol. The

field symbols should not have spaces.
The output fields are stored in BANCS.OUTPARAM.<title field>=. An error free
condition is represented by 0 value of BANC.OUTPARAM.DB_ERRCODE.

» In case the query returns more than single row, it gives a FATAL error hence one
need to be very meticulous during query writing.
#» There is a size limitation of the query string size. In case where query size is very

large make use of scratch pad variables.

FUNCTIONALITIES, INPUT AND OUTPUT - DATABASE DML

This userhook allows script writer to perform DML Statements on the database

tables. Any updation in the database with this userhook will make an entry in SDA
table.

sv_r = urhk_dbSQL(variable)

The variable can be a scratch pad variable (sv_a) or a string ("update Upr Set
User logged _on_flg = ‘N" where session_id = "xxxx").

<==gtart
Lrace on

5V a="TRGEZ"

5V “b=urhk _db3SQL (" updatE upr set user logged on flg='N' where
user id=""+sv _a+"'")

prlnt{sv bl

trace off
end—

FUNCTIONALITIES, INPUT AND OUTPUT - DATABASE DML

This userhook allows script writer to perform DML Statements on the database

tables. Any updation in the database with this userhook will make an entry in SDA
table.

sv_r = urhk_dbSQL(variable)

The variable can be a scratch pad variable (sv_a) or a string ("update Upr Set
User logged _on_flg = ‘N" where session_id = "xxxx").

<==gtart
Lrace on

5V a="TRGEZ"

5V “b=urhk _db3SQL (" updatE upr set user logged on flg='N' where
user id=""+sv _a+"'")

prlnt{sv bl

trace off
end—

FUNCTIONALITIES, INPUT AND OUTPUT - DATABASE DML

The output fields are stored in BANCS.OUTPARAM.<title field=. An error free
condition is represented by 0 value of BANC.OUTPARAM.DB_ERRCODE.
Note:

This userhook must be used with utmost caution since none of the Finacle
Application logic will apply here.

FUNCTIONALITIES, INPUT AND OUTPUT - PRINT REPO FIELDS

This userhook is used to print the structure of a repository. The input to this userhook
Is a scratch pad variable or a string specifying repository variable.

<==8ftart
trace on
sv_r=urhk B2k PrintRepes ("BANCS")

end=—>=>

Input would be the name of the repository.

The output is available in the trace file under CDCI_LOGS.

	Slide 1: CORE BANKING APPLICATION CUSTOMIZATION
	Slide 2: Core Banking scripting syntax
	Slide 3: Learning Objectives
	Slide 4: WHAT IS SCRIPTING
	Slide 5: Repository and classes
	Slide 6: Repository and classes
	Slide 7: SCRIPTING Restrictions
	Slide 8: SCRIPTING SYNTAX
	Slide 9: SCRIPTING SYNTAX
	Slide 10: SCRIPTING comment
	Slide 11: Operators – Arithmetic operators
	Slide 12: Operators – Arithmetic operators
	Slide 13: Operators – comparison operators
	Slide 14: Operators – comparison operators
	Slide 15: Operators – logical operators
	Slide 16: Operators – UNARY operators
	Slide 17: Expressions and control structure
	Slide 18: Expressions and control structure
	Slide 19: Expressions and control structure
	Slide 20: Goto and gosub
	Slide 21: Goto and gosub
	Slide 22: Goto and gosub
	Slide 23: Calling and starting another script - spawning
	Slide 24: Calling and starting another script - spawning
	Slide 25: Calling and starting another script - spawning
	Slide 26: Built-in utility functions
	Slide 27: Built-in utility functions
	Slide 28: Built-in utility functions
	Slide 29: userhooks
	Slide 30: userhooks
	Slide 31: DEBUG UTILITIES
	Slide 32: DEBUG UTILITIES
	Slide 33: HSCRIPT MENU – TESTING Your script
	Slide 34: Exiting a script
	Slide 35: Bancs repo and stdin class - fields
	Slide 36: Bancs repo and stdin class - fields
	Slide 37: Bancs repo and stdin class - fields
	Slide 38: USERHOOKS AND EVENTS
	Slide 39: userhook
	Slide 40: REPOSITORY AND CLASSES
	Slide 41: functionalities, Input and output – Account validation
	Slide 42: functionalities, Input and output – Account information
	Slide 43: functionalities, Input and output – Account information
	Slide 44: functionalities, Input and output – Account information
	Slide 45: functionalities, Input and output – Account information
	Slide 46: functionalities, Input and output – Account information
	Slide 47: functionalities, Input and output – Account information
	Slide 48: functionalities, Input and output – Account information
	Slide 49: functionalities, Input and output – Account information
	Slide 50: functionalities, Input and output – Account information
	Slide 51: functionalities, Input and output – GET FILE Location
	Slide 52: functionalities, Input and output – round off amount
	Slide 53: functionalities, Input and output – round off amount
	Slide 54: functionalities, Input and output – round off amount
	Slide 55: functionalities, Input and output – round off amount
	Slide 56: functionalities, Input and output – round off amount
	Slide 57: functionalities, Input and output – date add
	Slide 58: functionalities, Input and output – date add
	Slide 59: functionalities, Input and output – DATABASE SELECT
	Slide 60: functionalities, Input and output – DATABASE SELECT
	Slide 61: functionalities, Input and output – DATABASE DML
	Slide 62: functionalities, Input and output – DATABASE DML
	Slide 63: functionalities, Input and output – DATABASE DML
	Slide 64: functionalities, Input and output – print repo fields

